Unusual Ring Expansion observed during the Dakin–West Reaction of Tetrahydroisoquinoline-1-carboxylic Acids using Trifluoroacetic Anhydride: an Expedient Synthesis of 3-Benzazepine Derivatives bearing a Trifluoromethyl Group

Masami Kawase

Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-02, Japan

The reaction of *N*-acyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acids with trifluoroacetic anhydride proceeds through mesoionic 1,3-oxazol-5-one intermediates followed by ring expansion to form 2-trifluoromethyltetrahydro-3-benzazepinone derivatives in good yields.

The 3-benzazepine ring system has long been of interest to a variety of investigators because of the physiological effects of certain of its derivatives¹ and because it is the basic ring system of various alkaloids.² Although several synthetic routes to 3-benzazepines have been reported in order to develop central nervous system and cardiovascular pharmaceutical agents,³ syntheses of 3-benzazepines with a trifluoromethyl group on the azepine unit have not been reported. From a biological point of view, trifluoromethyl substitution often confers unique properties to a molecule in terms of increased lipophilicity, which in turn changes *in vivo* absorption and transport rates.

We have already described⁴ the autoxidation of intermediary mesoionic 1,3-oxazol-5-ones obtained from a number of *N*-acyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acids **1** and *N*,*N'*-dicyclohexylcarbodiimide (DCC). In continuing this study, we have now found that the use of trifluoroacetic anhydride (TFAA) instead of DCC leads to a new, preparatively useful synthesis of tetrahydro-3-benzazepinone derivatives bearing a trifluoromethyl group.

Thus, treatment of 1a (1 mmol) with TFAA (5 mmol) in benzene (5 ml) containing pyridine (10 mmol) at 20 °C for 12 h gave rise to the 3-benzazepine 2a in 98% yield. Pyridine was not essential, but the absence of base lowered the yield (48%). 5 equiv. of TFAA with respect to **1a** were needed to obtain a high yield of **2a**, the use of 3 equiv. reducing the yield (50%). The structure of **2a** was determined from spectral and analytical data. The precise assignments of the carbon signals in **2a** were performed by ¹H-¹³C shift correlated 2D NMR (COSY) and ¹H-¹³C long-range COSY (COLOC) spectral analysis.† In particular, the carbonyl carbon signal at δ 158.83 was correlated with the 9-H signal at δ 7.61 in the COLOC spectrum (³J_{C-H}). Therefore, the carbonyl group must be located at C-1.

Variation of the N-acyl groups was briefly examined and it became obvious that the nature of N-substituents influenced

[†] For **2a**: ¹H NMR (CDCl₃): δ 1.23 (s, 9H, Bu'), 2.67–2.74 (m, 2H, 5-H₂), 3.62–3.74 (m, 1H, 4-H^a), 3.85–3.96 (m, 1H, 4-H^b), 6.28 (q, J 6.9 Hz, 1H, 2-H), 7.20 (d, J 7.3 Hz, 1H, 6-H), 7.34 (dt, J 1.4, 7.3 Hz, 1H, 7-H), 7.36 (dt, J 1.4, 7.3 Hz, 1H, 8-H) and 7.61 (d, J 7.3 Hz, 1H, 9-H); ¹³C NMR (CDCl₃): δ 25.62 (t, C-5), 26.86 (q, 3 × Me), 38.84 (s, CMe₃), 47.33 (t, C-4), 70.89 (dq, ²J_{C,H} 32.4 Hz, C-2), 122.99 (q, J_{C,H} 277.8 Hz, CF₃), 125.03 (d, C-9), 126.74 (s, C-5a), 127.03 (d, C-7), and 176.46 (s, COBu').

Table 1 Reactions of carboxylic acids with TFAA^a

Entry	Starting material	Product (% yield) ^b	M.p. or b.p., <i>t</i> /°C ^c (<i>p</i> /mmHg)	¹³ C NMR δ _C (C=O)	
1	1a	2 a (98)	150(3)	158.83	176 46
2	1b	2b (92)	62-63	158.20	176.45
3	1c	2c $(61)^d$	185(2)	158.72	164.67
4	1d	2d (58)e	185 (1)	158.50	163.87
5	1e	2e (52)f	91-92	158.88	164.22
6	lf	4 (28)	174–176	175.12 (q, J	/ 36.1 Hz)
7	1g	3d (61) ^g	135(1)	156.24	189.32

^a The reactions were carried out according to the general procedure described in the text. All new compounds have satisfactory spectroscopic data and elemental analyses. ^b Isolated yields of pure products. ^c B.p. refers to the bath temperature in a 'Kugelrohr' apparatus. ^d Plus 28% of **3a**, m.p. 131–132 °C. ^e Plus 15% of **3b**, b.p. 150 °C (bath temp.) at 1 mmHg. ^f Plus 24% of **3c**, m.p. 114–115 °C. ^g Plus 17% of **5**, b.p., 145 °C (bath temp.) at 1 mmHg. an autoxidation product of intermediate **A** (R = CO₂Et).⁴

the reaction. As shown in Table 1, *N*-acyl derivatives 1a-e, containing pivaloyl or benzoyl groups, were easily transformed to the 3-benzazepines 2a-e in good yields. In the case of *N*-benzoyl derivatives 1c-e, small amounts of the 1-trifluoroacetyl-tetrahydroisoquinolines 3a-c, respectively, were obtained as by-products. The *N*-acetyl derivative 1f afforded not the expected 3-benzazepine derivative but the oxazoline 4, whose structure was confirmed by spectral and analytical data.

Clues to the possible mechanism of this reaction are provided by the isolation of 3, a product of the Dakin-West reaction,⁵ and 4. It was also observed that 3a yielded the 3-benzazepine 2c in 56% yield under the same reaction condition as 1c. A plausible mechanism is shown in Scheme 1. This reaction involves a mesoionic 1,3-oxazol-5-one A formed through the cyclodehydration of 1 by TFAA. Intermediate A undergoes trifluoroacetylation followed by decarboxylation to give the enol trifluoroacetate B which is an enol form of 3; a similar mechanism has been postulated in the Dakin-West reaction.⁵ Cyclization of B gives the oxazolinium salt C whose existence is supported by the isolation of 4 in the reaction of 1f. Intermediate C (R = Me), bearing α -hydrogens, isomerizes to F which undergoes trifluoroacetylation. A similar type of

Scheme 1 Possible mechanism

bistrifluoroacetylation has been reported in the reaction of other vinyl ethers with TFAA in the presence of pyridine.⁶ It is difficult to find a definitive explanation for the ring expansion of **C** to **2**. However, as the **R** groups do not possess α -hydrogens, the isomerization of **C** is no longer possible. It is postulated that the ring expansion of **C** proceeds *via* oxazoline salt **D**, formed by the addition of trifluoroacetic acid, in a concerted fashion as shown in **E** leading to the azepine **2**. A similar ring expansion was postulated in the oxidative rearrangement of naturally occurring oxyberberine into chilenine, an isoindolobenzazepine alkaloid.⁷

In summary, the reaction offers a unique and attractive synthesis of 3-benzazepine derivatives with a trifluoromethyl group α to nitrogen by a novel rearrangement, making these compounds easily accessible from readily available precursors.⁴ The details of the mechanism of the ring expansion are currently under investigation.

Received, 28th April 1992; Com. 2/022071

References

- 1 J. Weinstock, J. P. Hieble and J. W. Wilson, *Drugs Fut.*, 1985, **10**, 649; J. M. McCall, *Annu. Rep. Med. Chem.*, 1990, **25**, 1.
- 2 H. Ronsch, in *The Alkaloids*, ed. A. Brossi, Academic Press, New York, 1986, vol. 28, p. 1; C. T. Montgomery, B. K. Cassels and M. Shamma, *J. Nat. Prod.*, 1983, **46**, 441.
- 3 P. A. Evans and A. B. Holmes, *Tetrahedron*, 1991, 47, 9131; G. R. Lenz, J. Org. Chem., 1988, 53, 5791 and references cited therein.
- 4 M. Kawase, J. Chem. Soc., Chem. Commun., 1990, 1328.
- 5 G. L. Buchanan, Chem. Soc. Rev., 1988, 17, 91.
- 6 M. Hojo, R. Masuda and E. Okada, Synthesis, 1990, 347; M. Hojo, R. Masuda, Y. Kamitori and E. Okada, J. Org. Chem., 1991, 56, 1975 and references cited therein.
- 7 V. Fajardo, V. Elango, B. K. Cassels and M. Shamma, *Tetrahedron Lett.*, 1982, 23, 39; J. L. Moniot, D. M. Hindenlang and M. Shamma, *J. Org. Chem.*, 1979, 44, 4337; C. R. Dorn, F. J. Koszyk and G. R. Lenz, *J. Org. Chem.*, 1984, 49, 2642.